_
_
_
_
Darío Gil, director de investigación de IBM, frente al IBM Q System, en su edificio de Yorktown Heights, en Nueva York.
Darío Gil, director de investigación de IBM, frente al IBM Q System, en su edificio de Yorktown Heights, en Nueva York.

Aquí empieza la revolución cuántica

La carrera en busca del ordenador más inteligente que ha conocido la humanidad acaba de comenzar. Pero resulta tan prometedora que ya ha desatado una feroz competición con inversiones millonarias en busca de la tecnología que lo cambiará todo. Entramos en los laboratorios de Google e IBM para conocer sus apuestas en esta fascinante nueva era tecnológica.

El laboratorio está en un lugar apartado, en una pequeña oficina sin identificar. Tiene un aire caótico, antiguo, un poco vintage. Hay cables sueltos, destornilladores, piezas de ordenador, pizarras con fórmulas matemáticas, ordenadores desmontados. Y dentro de una campana roja, conectado con decenas de cables, una especie de imponente candelabro de medio metro que entona un suave y constante chip, chip, chip. Cuesta creer que en este lugar apartado, a unas dos horas de Los Ángeles, se produjera en octubre un gran hito de la tecnología que saltó a la primera página de todos los diarios. Aquí, en el laboratorio de computación cuántica de Google en Santa Bárbara (EE UU), la compañía ha logrado que esa especie de lámpara gigante realice en 3 minutos y 20 segundos una operación para calcular números aleatorios que al ordenador más potente del mundo le llevaría miles de años. Esa lámpara alberga un chip cuántico y su logro (denominado “supremacía cuántica”) es para el leonés Sergio Boixo, jefe científico de teoría de la computación cuántica de Google, como el primer vuelo de los hermanos Wright: un hito aún modesto pero que abre paso a toda una nueva industria que cambiará radicalmente la sociedad en la que vivimos. Rivales e investigadores independientes creen que la comparación puede ser exagerada, ya que la revolución cuántica está aún muy lejos, pero todos los expertos coinciden en que, cuando llegue, lo cambiará absolutamente todo.

Esta es la historia de un mundo fascinante y misterioso, donde las reglas de la física que conocemos, esas que rigen el bote de una pelota o la caída de una manzana, no funcionan. El mundo subatómico es una especie de país de las maravillas, un lugar minúsculo y extraño donde Alicia podría estar a caballo entre situaciones aparentemente incompatibles, donde lo que se hace en un lugar puede afectar instantáneamente a un objeto que está muy lejos, y donde no se puede mirar impunemente porque esa mirada altera el objeto observado, como explica Andrés Cassinello, autor de La realidad cuántica. Y también es la historia de los pioneros que intentan dotar de sentido a este extraño mundo para fabricar los ordenadores más inteligentes y potentes que ha conocido la humanidad. En la carrera por la computación cuántica, países como China y Estados Unidos y empresas como IBM y Google han invertido miles de millones de dólares en construir un coche que, en el símil de la carrera, no es que adelante a los demás, es que llegaría a la meta unos instantes después del pistoletazo de salida. Es lo que Juani Bermejo, investigadora de la Universidad de Granada, llama “poderío cuántico”.

La clave para entender esta revolucionaria tecnología está en la base de su funcionamiento. Los ordenadores que conocemos funcionan con bits de programación binarios, “0” o “1”. Pero los bits cuánticos o cúbits tienen tres características que los hacen especiales. Una es la superposición, por la que dos cúbits pueden ser las cuatro combinaciones de “0” y “1” a la vez, lo que multiplica exponencialmente su capacidad de cálculo. Es algo parecido a lo que sucede cuando una moneda gira: es una combinación de cara y cruz, según explica el director de investigación de IBM, Darío Gil. La segunda idea se llama “entrelazamiento” y es muy romántica: el estado de cúbits entrelazados no puede ser descrito de manera independiente. En el ejemplo de Gil, si dos monedas entrelazadas giran, al medirlas veremos que si una es cara, la otra también lo será, y si una es cruz, lo mismo será la otra; las probabilidades no son independientes. Y la tercera idea, la de la interferencia, es como ocurre con las olas en el mar, que tienen picos y valles, que pueden interferir en los picos y valles de otras olas, explica Gil. Esta combinación tan singular de características, y tan contraintuitiva, hace que la cuántica no sea una categoría más de la informática que conocemos. “Es otro mundo, es la primera vez donde se realiza una bifurcación en la categoría de computación”, explica Gil. “Para mí, estamos en el momento más emocionante en el mundo de la tecnología de la información en los últimos 50 o 60 años”, añade este experto murciano, que es el primer europeo que dirige la potente división de investigación de IBM en sus 75 años de historia.

El procesador cuántico de IBM.
El procesador cuántico de IBM.

Hay cosas que los ordenadores clásicos hacen muy bien y que los superordenadores hacen mejor. Pero los ordenadores cuánticos están en otra dimensión, y por eso no seremos capaces de saber exactamente qué van a poder hacer hasta que se desarrollen en toda su capacidad. Pero sí podemos intuir en qué podrían ayudarnos. Los campos más claros son aquellos donde las reglas cuánticas funcionan al margen de nuestra realidad: la física y la química. Los ordenadores cuánticos podrían simular nuevas moléculas para la industria farmacéutica que nos ayudaran, por ejemplo, a lograr fármacos en tiempo récord para una pandemia mundial como la de la covid-19. También pueden mejorar nuestro conocimiento sobre cómo se originó el universo, descubrir nuevos materiales, mejorar las baterías de los coches eléctricos, lograr un uso más eficiente de la energía. Y, aunque no parezca demasiado sexy, otro ejemplo relevante es mejorar la fijación de nitrógeno para producir fertilizantes, que genera más del 2% de las emisiones de CO2 del mundo.

La cuestión es que, como explica Boixo, la informática clásica usa el mismo tipo de reglas desde que se inventó el ábaco. “Hemos tenido, claro, avances tecnológicos y en ingeniería impresionantes: en un ábaco tienes unas pocas piezas y las mueves con las manos, y un superordenador tiene billones de piezas que se mueven miles de millones de veces por segundo. Pero las operaciones fundamentales son las mismas. Ahora tenemos un nuevo método de computación distinto a los métodos con los que llevamos trabajando 3.000 años”. Gil está de acuerdo: “Hay una clase de problemas en el mundo que no podremos resolver de manera eficiente con un ordenador clásico. Ni ahora, ni dentro de 20.000 millones de años, ni nunca. No estamos diciendo que la cuántica vaya a resolver todos los problemas que son difíciles, sino que es la única tecnología que altera lo que es posible resolver”.

Dos trabajadores del centro de investigación de IBM en Yorktown Heights mueven el IBM System Q, desprovisto de su carcasa.
Dos trabajadores del centro de investigación de IBM en Yorktown Heights mueven el IBM System Q, desprovisto de su carcasa.

Mientras habla, Gil recorre los pasillos del impresionante edificio de IBM Research en Yorktown Heights, a una hora y media en coche de Nueva York. Esta mole gigantesca, a lomos de una colina rodeada de bosques, tiene poco que ver con el pequeño laboratorio de Google, a 4.700 kilómetros de distancia. IBM presume también de sus cifras frente a las de su competidor: 109 años de historia, seis premios Nobel, 4.000 personas trabajando en I+D en todo el mundo (aunque la compañía no aclara cuántas de ellas lo hacen en su división cuántica). Tiene 16 sistemas cuánticos en la nube con 220.000 usuarios de más de 100 organizaciones que han escrito más de 225 trabajos científicos con sus sistemas conectados. Y una máquina que presentó el año pasado, Q System One, y que va a ser instalada en Japón, como parte de la co­laboración con la Universidad de Tokio, y en Alemania, con el Instituto Fraunhofer.

Al otro lado del país, Boixo presume de la supremacía cuántica de Google, un logro nunca antes conseguido. “Comenzamos a hacer cálculos hace ya tres años”, explica. “La idea era demostrar que realmente existe un método de computación distinto y que en la práctica sí funciona. Nos parece un hito científico muy importante en la historia de la computación”.

Sergio Boixo, jefe científico de teoría de la computación cuántica de Google.
Sergio Boixo, jefe científico de teoría de la computación cuántica de Google.

Ninguna de las cifras de IBM, ni tampoco el logro de Google, impresionan demasiado a Juan Ignacio Cirac. El investigador español, director del Instituto Max Planck de Óptica Cuántica, es una de las personalidades más relevantes de la ciencia cuántica en el mundo. Reflexiona: “Es un momento interesante, muy interesante, pero lo que tenemos no es todavía la computación cuántica. Ese momento, que sabemos que tendrá un impacto enorme en la sociedad, está todavía muy lejos”. Y explica por qué: “Si ha visitado los laboratorios de Google o IBM, habrá visto que sus chips tienen muchísimos cables solo para manejar unos 50 cúbits. La clave está en pasar de 50 cúbits a 50 millones. Y ese momento está muy lejos”.

Siistema cuántico de Google en Santa Bárbara (EE UU).
Siistema cuántico de Google en Santa Bárbara (EE UU).

Para que ese coche de carreras cuántico llegue a la línea de meta cuando suene el pistoletazo de salida, aún debe superar un camino repleto de dificultades. Como explica Cirac, el máximo de cúbits alcanzado en este momento por los chips de IBM y Google ronda los 50. Pero esa cantidad es aún minúscula. Y los investigadores no pueden aumentarla sin más. Los chips cuánticos son de una delicadeza extrema. Están en laboratorios muy controlados, aislados, rodeados de una tecnología complejísima para hacerlos funcionar. Antonio Córcoles, investigador del equipo cuántico de IBM Research en Yorktown Heights, explica en el laboratorio qué es lo que ocurre en ese hermoso candelabro rodeado de cables: los cúbits superconductores funcionan con microondas y hay que enfriarlos, ya que todo calor en el sistema se traduce en ruido que puede producir errores. El procesador cuántico está en la parte inferior, que es la más fría. Esta parte está unas 250 veces más fría que el espacio exterior, y esta temperatura se alcanza progresivamente a lo largo de varias horas desde temperatura ambiente. De ahí el tamaño del sistema y la cantidad de cables que lo sostienen. Todo eso significa que no puedes aumentar el número de cúbits de tu ordenador a lo loco; el problema es hacerlo sin aumentar también brutalmente su tamaño y el número de cables enchufados a él, manteniendo la estabilidad y sin incrementar los errores, porque un ordenador con errores, por muy cuántico que sea, no sirve para nada.

Miembros del equipo cuántico de IBM.
Miembros del equipo cuántico de IBM.

En el laboratorio de Google, Boixo se muestra de acuerdo: “Para pasar de 50 cúbits a un millón hay muchos problemas muy difíciles que resolver. Queremos seguir aumentando ese número, pero el nivel de errores tiene que bajar”. Por eso, los chips cuánticos aún hacen tareas muy simples; son los bebés de los verdaderos ordenadores que, según los expertos consultados, podrían tardar entre 10 y 30 años en llegar. “En tecnología es muy difícil predecir nada más allá de 10 años”, explica Juani Bermejo, que es investigadora Athenea3i-Marie (Sklodowska) Curie en computación cuántica. “Pero las predicciones de cuándo serán útiles los ordenadores cuánticos requiere que se desarrolle la tecnología de corrección de errores que aún no se ha desarrollado”. Bermejo insiste: los ordenadores cuánticos no están volando ni cerca de volar, en la metáfora de los hermanos Wright que usa Google. “Están en pañales”.

Treinta años son toda una vida para un individuo. Pero para las grandes empresas, centros de investigación y Gobiernos significa que el momento para prepararse para la gran era cuántica es ahora. Federico Carminati es el director de innovación del CERN, la Organización Europea para la Investigación Nuclear, el mayor laboratorio de investigación en física de partículas en el mundo y lo más parecido a una catedral de la ciencia, si la ciencia creyera en Dios. El CERN trabaja ya en computación cuántica con IBM, Google, Intel o Microsoft, y Carminati explica por qué: “Para mí es como comprar un billete de lotería. Si me pregunta si llegará la computación cuántica, mi respuesta es que sí. La cuestión es cuándo. Pero, mientras tanto, es muy importante que al menos unas cuantas personas en la organización entiendan y conozcan qué es y cómo usar computación cuántica. Si no llega, será una interesante aventura intelectual. Y si llega, estaremos preparados para usarla y explotarla”. Katie Pizzolato, directora de la red de clientes de tecnología cuántica de IBM, explica que el trabajo de la empresa con esos clientes que usan ya su tecnología cuántica en la nube (farmacéuticas, empresas de automoción, compañías financieras o el propio CERN) es algo distinto del habitual: “Nos dicen: ‘Estas son las cuestiones que podrían ser interesantes, valiosas o disruptoras en nuestra industria. ¿Cómo podemos empezar a afrontar esos problemas desde una óptica cuántica?’. Ha pasado mucho tiempo desde que en tecnología tenemos una pizarra en blanco, así que lo que les preguntamos es qué querrían hacer ahora que no pueden hacer con la tecnología actual. Y empezamos a trabajar”. Para Ismael Faro, responsable de software y servicios cloud de IBM Quantum en Yorktown Heights, lo mejor de trabajar día tras día en un método que aún no está claro para qué va a servir es “compartir tiempo con gente que tiene pasión por tecnologías que solo hace unos años sonaban a ciencia-ficción; es como una ventana al futuro”.

PODCAST Extra EPS: Poder cuántico

Las empresas están invirtiendo mucho dinero en esta tecnología que además es carísima. Ni Google ni IBM hacen públicas las cifras de lo que gastan en ella, ni los clientes que la usan cuentan cuánto gastan, pero basta un dato para hacerse una idea: el prototipo cuántico 2000Q de la empresa D-Wave cuesta 15 millones de dólares (algo más de 13 millones de euros). Las empresas de capital riesgo invirtieron alrededor de 1.oo0 millones de dólares en empresas recién creadas (start-ups) en 2017, según datos de Statista. También se registraron 925 patentes ese año relacionadas con tecnología cuántica, el doble del año anterior, según la misma fuente, lo cual demuestra cómo ha aumentado el interés de diferentes compañías y empresas en este campo. El interés ha provocado también que se intensifique la búsqueda de profesionales cuánticos, que aún no existen en la cantidad que se reclama: “En algunas empresas han contratado estudiantes sin doctorado”, explica Bermejo. “Se forma con relativa lentitud, también porque no hay tantos profesores de universidad que sepan de esto; hasta hace poco, los cuánticos éramos los frikis de las universidades. Hay que formar a gente para que forme a otros”, añade. Cirac cuenta que en sus centros de formación de Múnich empiezan a realizar másteres en computación cuántica, y también los están poniendo en marcha en universidades como Berkeley, Stanford, el MIT o Harvard. “Los profesionales del futuro tienen que estar preparados en campos como la física y la computación cuántica. Habrá nuevos trabajos relacionados con la ingeniería y, más adelante, cuando tengamos ordenadores cuánticos, incluso la programación”, explica. El español Paco Martín, líder de desarrollo cloud de IBM Quantum en Yorktown ­Heights, recomienda a los jóvenes que quieran formarse en esta tecnología que “abran su mente, que no piensen de forma clásica mientras asimilan los conceptos básicos”.

Detalle del procesador cuántico de Google.
Detalle del procesador cuántico de Google.

Según la consultora BCG, el negocio de la cuántica podría alcanzar los 60.000 millones de dólares en 2035 y los Gobiernos no quieren quedarse al margen de esta revolución. El que va a la cabeza, a gran distancia de los demás, es China. Su laboratorio para las ciencias de la información cuántica invertirá 10.000 millones de dólares entre 2017 y 2020. Estados Unidos anunció el año pasado una estrategia nacional por la que invertirá 1.200 millones hasta 2023. Y la Unión Europea puso en marcha en 2016 una iniciativa que invertirá 1.000 millones en 10 años. Y es que aquí no se trata solo de ser el primero en conseguir ordenadores potentes que realicen grandes descubrimientos; se trata también de ocultar tus secretos actuales a tu futuro rival cuántico.

La madre del cordero de la tecnología cuántica es la criptografía. Los sistemas de seguridad actuales están protegidos por claves criptográficas que pueden ser más o menos descifrables según su complejidad y lo hábiles que sean los hackers que tratan de vulnerarlos. Pero la tecnología cuántica cambia completamente las reglas del juego, así que hay que encontrar un nuevo protocolo de seguridad que proteja los datos, pero no ya los del futuro, sino los de hoy. “Sabemos que la tecnología cuántica es capaz de descifrar los sistemas de cifrado que se usan ahora mismo; lo sabemos desde hace mucho, y eso también quiere decir que hemos tenido bastante tiempo para prepararnos”, explica Boixo. Gil incide en la idea: “El problema es real y hay que actuar ahora”. El almacenamiento de datos es muy barato, así que un hacker inteligente o un Gobierno rival puede almacenar tus datos encriptados y, en el futuro, utilizar una máquina cuántica para desencriptar tranquilamente el pasado.

China ya ha anunciado que quiere ser el líder cuántico en 2035 y está trabajando en una red de comunicación impenetrable de la que ya ha hecho las primeras pruebas. Los movimientos chinos han puesto muy nerviosos a algunos senadores estadounidenses, que han empujado al Gobierno de Donald Trump a realizar sus propias inversiones. “De la misma manera en que las armas atómicas simbolizaron el poder en la Guerra Fría, las capacidades cuánticas definirán posiblemente la hegemonía en nuestra economía cada vez más digital, global e interconectada”, ha escrito el senador republicano Will Hurd en la revista Wired. Por eso, las empresas llaman a implementar cuanto antes un nuevo protocolo de encriptación que sea seguro. “Hay una urgencia en cambiar nuestros datos más sensibles al nuevo protocolo. Cada día que pasa utilizando el sistema del pasado es otro día que dejas vulnerable a la desencriptación del futuro”, explica Gil.

Detalle del interior del sistema cuántico de Google.
Detalle del interior del sistema cuántico de Google.

Ese nuevo futuro, cuyas posibilidades empezamos solo a atisbar, puede verse perjudicado por lo que los expertos denominan el “invierno cuántico”, una caída en las expectativas e inversiones dedicadas a este negocio si la tecnología avanza más lentamente de lo que se espera, más aún ahora que se va a producir una recesión de consecuencias imprevistas debido a la pandemia del coronavirus. “Creo que puede haber desilusión, y menos dinero, cuando la gente se dé cuenta de que ocurre lo que los científicos decimos constantemente, y es que los ordenadores cuánticos cuesta mucho construirlos”, dice Bermejo. “La mejor manera de evitarlo es seguir trabajando en aplicaciones prácticas y un ordenador tolerante a fallos. Procuramos no esconder las dificultades: estamos al principio de esta carrera”, dice Boixo. Cirac es más contundente: “Yo estoy convencido de que el invierno cuántico va a suceder. Esos son los 10, 15 o 20 años de los que hablamos hasta que tengamos un ordenador. En estos momentos tenemos lo que los americanos llaman un hype [promoción exagerada] acerca de la computación cuántica. Y luego, con el tiempo, habrá una resurrección”.

Ese hype, que nadie niega, tampoco oculta la relevancia que va a tener este cambio tecnológico en la economía, la industria y en nuestras vidas, hasta lo que Boixo espera que sea “una nueva revolución industrial”. Hasta entonces, hay algunas tareas por el camino, como la solución de errores que transforme nuestros procesadores cuánticos bebés en auténticos ordenadores cuánticos adultos. También habrá que mejorar la formación de una nueva generación de físicos, ingenieros y programadores. Y también hay que reflexionar sobre lo que Bermejo llama “investigación cuántica responsable, porque la tecnología, si no se realiza de manera humana, puede acabar mal”. La idea es que no ocurra como con la inteligencia artificial, lastrada por la ausencia de ese factor humano que explica que tenga tantos sesgos y carezca a menudo de ética. Pero sean cuales sean los obstáculos, y sea cual sea el tiempo que se tarde en esquivarlos, todos los expertos confían en que esta nueva manera de resolver problemas nos llevará a realizar descubrimientos y alcanzar logros que nuestra limitada mente de Homo sapiens, que apenas entiende qué ocurre en el pequeño submundo cuántico, ni siquiera es capaz de empezar a imaginar.—eps

Más información

Archivado En

_
_