_
_
_
_

Las matemáticas gobiernan Disney

El responsable de los cálculos que permiten alcanzar el realismo en el comportamiento dinámico del pelo de Rapunzel o la nieve de 'Frozen', el profesor de UCLA Joseph Teran, cuenta cómo logra esta magia a veces inapreciable por el ojo humano

Fotograma de la película 'Frozen' (2013).
Fotograma de la película 'Frozen' (2013).

Las cosas han cambiado mucho desde tiempos de la primera Toy Story (Disney-Pixar, 1995) o el primer Shreck (DreamWorks, 2001). En la Conferencia Europea sobre Matemáticas para la Industria, celebrada en Santiago esta semana, varios maestros del mundo de la animación lo comentaban y se reían al recordar aquella tosquedad, aquella persecución todavía torpe del realismo que fue superada de forma inimaginable en el cine posterior e incluso en los videojuegos, la llamada animación en "tiempo presente" que se mueve con los condicionantes de la espontaneidad de la jugada. El secreto de la evolución galopante en esta última década se esconde en las matemáticas y la física. Aunque el mundo fantástico que habita las películas de animación tiene sus propias leyes, los artistas buscan hacerlo creíble. Por eso ya no se conciben las factorías de metraje animado que no cuenten con asesores, o incluso personal en plantilla, bregados en estas materias.

En el caso del gigante Disney, los fichajes salen de UCLA (University of California, Los Angeles), que la nutre de científicos en fase de tesis doctoral, capitaneados por el cerebro superpoblado de ecuaciones del profesor de matemática aplicada Joseph Teran. Este investigador multipremiado pero todavía joven visita todos los jueves los estudios Walt Disney en la localidad de Burbank (condado de L.A.), donde a diario trabajan algunos de sus pupilos traduciendo a números el comportamiento real de los materiales que recrean después de forma virtual los dibujos. Son graduados de UCLA como Alexey Stomakhin, un ruso que desveló a Teran, su maestro nacido bajo el sol de California, y en general a todo el mundo de la animación el comportamiento singular y fascinante, continuamente cambiante, de la nieve, nunca antes explorado en cine, cuando los artistas de la fábrica de sueños (y meca del merchandising) buscaban la perfección en las blancas y gélidas escenas de Frozen.

La nieve es un elemento que funde propiedades de materias sólidas y líquidas en un repertorio casi infinito. Teran la define como "elastoplástica", rígida y deformable a la vez, y se comporta de forma diferente cuando es polvo que cuando está compactada, cuando es una bola que colisiona o cuando se la hace rodar por una pendiente. No es lo mismo pisar hielo crujiente que hundir las botas en nieve virgen y esponjada; no es igual la estela de unos esquís que el haz que proyecta un quitanieves; o el peso destructor de una avalancha; o el tacto de los copos que se congelan de nuevo después de empezarse a derretir; o los que agonizan sin remedio cuando aprieta el calor. Se puede moldear y también puede ser durísima, o enroscarse como una alfombra para empezar a construir un muñeco como Olaf, el personaje generoso y optimista de Disney que sueña con sobrevivir un verano para ir a la playa y "soplar un diente de león".

La nieve lleva siglos representándose en el arte, pero el arte nunca intentó, hasta Frozen, recrear la vida de la nieve a través de fórmulas matemáticas para su aplicación en una cinta de animación por ordenador. Su dinámica "sorprendentemente bella y variada", su humedad y su densidad, no se podían reproducir "de manera convincente" con las técnicas ya desarrolladas para sólidos y fluidos. Así que Disney, como siempre que se le presenta una dificultad semejante a sus creativos y sus informáticos, planteó el reto a los matemáticos de UCLA, y Teran ideó un nuevo sistema de simulación de nieve para usuarios bajo el que subyacen teorías de Newton y algoritmos de dos grandes matemáticos y físicos del siglo XVIII, Euler y Lagrange, que desarrollaron los conceptos de partícula, masa, velocidad o movimiento, la mecánica de los sólidos rígidos y la hidrodinámica.

Teran, profesor de Matemática Aplicada en UCLA, el pasado martes 14 en Santiago.
Teran, profesor de Matemática Aplicada en UCLA, el pasado martes 14 en Santiago.ÓSCAR CORRAL

El equipo de Teran trabaja sobre cuadrículas cartesianas, y cada punto material es tratado de forma individual dentro de la malla. "En Disney aplicamos píxeles poliédricos, como piezas de Lego diminutas que se colorean y que dan un realismo visual que es tanto mayor cuando más pequeñas son. Hacen falta millones de puntos referenciales para obtener precisión en la imagen" y recrear una elasticidad extrema como la de la gelatina, la fragilidad del cristal o las propiedades de los distintos tipos de tela, del pelo o de la piel que se mueve sobre la grasa corporal, el músculo y el esqueleto. "A veces, el resultado no llega a la excelencia", reconoce, pero otras, como cuando se resquebraja la bola transparente en la que se desplaza el hámster en Bolt (2008), "hay detalles de tal grado de realismo que ni siquiera puede apreciarlos el ojo humano". Teran, que también ha aplicado sus estudios sobre anatomía a programas para el aprendizaje de técnicas quirúrgicas, aspira a calcularlo todo. Los números de UCLA están detrás del comportamiento dinámico de la melena de Rapunzel, que no se mueve como lo hizo hasta entonces el pelo de otras princesas; del humo que emana de la marmita de una bruja; de un chorro de chocolate hirviente que cae sobre un helado y lo derrite.

Desarrollar una completa carta de nieves para los artistas gráficos, sus formas de fractura, su peculiar manera de caer sin botar, su rigidez creciente cuando se comprime, le costó a su equipo un año y medio de investigación tomando como herramienta el llamado Método del Punto Material. Y el resultado debió de ser inesperado para los creativos de Disney, a juzgar por la reacción de uno de los directores de la película animada. "Tienen que ver tantas imágenes a lo largo de una hora que normalmente no encuentran tiempo de articular palabra. Para ahorrarse decir 'me gusta' tocan una campanilla, y con los efectos de la nieve el director [Chris Buck] tocaba como un loco".

Joseph Teran, en Santiago de Compostela.
Joseph Teran, en Santiago de Compostela.ÓSCAR CORRAL

En su visita a Santiago para participar en la 19ª edición de esta conferencia bianual que busca ser un puente entre la industria de todo tipo y sus problemas y los matemáticos que ingenian soluciones, Joseph Teran despejó una duda que preocupa, sobre todo, a los que están aprendiendo a sumar: la segunda parte de la exitosa Frozen, que vio la luz en 2013, no se estrenará "ni en un año ni en dos". "No va tan rápido como quisiéramos... Todavía se está trabajando en la historia", y hasta que haya un guión no se sabrá qué retos técnicos, físicos y matemáticos, habrá que superar para recrear las escenas.

Volar sin modo avión

S. R. P.

La Conferencia Europea sobre Matemáticas para la Industria (organizada por el Consorcio Europeo de Matemáticas en la Industria) convirtió a Compostela durante una semana en la capital de la ciencia exacta. De lunes a viernes, entre el 13 y el 17 de junio, tuvieron lugar en la Universidade de Santiago 300 charlas de expertos para expertos, sobre la aplicación práctica de las matemáticas a la protección del medio ambiente, la lucha contra el cáncer, los sistemas de defensa, el cine y cantidad de sectores industriales. Junto a Joseph Teran, participaron en un acto abierto al público (El camino matemático hacia los Oscars) los españoles Ignacio Vargas (fundador de la firma madrileña Next Limit) y Xenxo Álvarez (The Gearing).

Vargas, reclamado como experto en dinámica de fluidos por directores de animación de todo el mundo, era ya el responsable de los métodos numéricos que calculaban cómo se distribuían las partículas de lava en El señor de los anillos: el retorno del rey (WingNut Films, 2003); las golosinas viscosas de Charlie y la fábrica de chocolate, dirigida por Tim Burton y estrenada en 2005; y los torrentes causados por el deshielo en Ice Age (una serie de películas de Blue Sky Studios que vieron la luz desde 2002). Su empresa desarrolla programas avanzados para la recreación del comportamiento dinámico de todo tipo de materiales, tanto para videojuegos como para filmes, y trabaja desde hace ocho años en una biblioteca virtual de software para fenómenos físicos, Caronte, donde se registran los cálculos para el viento, los tejidos, las explosiones, las colisiones o el agua. En Santiago contó que empezó "haciendo pequeños programitas con el Spectrum de 8 bits" de sus primos, porque él no tenía ordenador en casa.

Entre las conferencias estrella de la reunión de sabios que aspira a servir de "ventanilla única" entre empresarios y matemáticos de todo el mundo (para que los primeros encuentren rápidamente al científico que precisan en cualquier lugar) estaba la de Toufic Abboud, que trabaja para Airbus. Abboud, profesor de la École Polytechnique (Palaiseau, cerca de París), es el investigador responsable de un modelo matemático que predice el comportamiento de las ondas electromagnéticas que emiten móviles y tabletas.

Hasta ahora, el personal de los aviones obligaba en el momento del despegue a apagar los aparatos eléctricos, pero este ingeniero está desarrollando con la compañía aeronáutica un sistema que podría evitar en breve que las ondas de los teléfonos de los pasajeros entren en conflicto con las de los instrumentos de navegación. Sería el fin del "modo avión", al menos, dentro del avión.

Tu suscripción se está usando en otro dispositivo

¿Quieres añadir otro usuario a tu suscripción?

Si continúas leyendo en este dispositivo, no se podrá leer en el otro.

¿Por qué estás viendo esto?

Flecha

Tu suscripción se está usando en otro dispositivo y solo puedes acceder a EL PAÍS desde un dispositivo a la vez.

Si quieres compartir tu cuenta, cambia tu suscripción a la modalidad Premium, así podrás añadir otro usuario. Cada uno accederá con su propia cuenta de email, lo que os permitirá personalizar vuestra experiencia en EL PAÍS.

¿Tienes una suscripción de empresa? Accede aquí para contratar más cuentas.

En el caso de no saber quién está usando tu cuenta, te recomendamos cambiar tu contraseña aquí.

Si decides continuar compartiendo tu cuenta, este mensaje se mostrará en tu dispositivo y en el de la otra persona que está usando tu cuenta de forma indefinida, afectando a tu experiencia de lectura. Puedes consultar aquí los términos y condiciones de la suscripción digital.

Archivado En

Recomendaciones EL PAÍS
Recomendaciones EL PAÍS
Recomendaciones EL PAÍS
_
_