Educación pone un problema sin solución en la prueba de 3º de ESO
Dos editores y un matemático aseguran que dos páginas de un libro abierto nunca suman 99 - 50.000 alumnos pasaron ayer la prueba
La Consejería de Educación planteó ayer un ejercicio sin solución a 50.000 alumnos de 3º de la ESO en su prueba anual de competencias matemáticas elementales. La primera pregunta del examen de Pruebas de Conocimientos y Destrezas Indispensables (puesto en marcha en 2008 para evaluar la formación de los adolescentes de 14 a 15 años un año antes de sacarse el graduado escolar, en 4º de la ESO) está mal formulada por los profesores especializados de la consejería dirigida por Lucía Figar.
"Andrea abre un libro y observa que la suma de los números de las dos páginas que tiene delante es 99. ¿Cuáles son esos números?", reza el enunciado. La hoja de corrección realizada por Educación da una respuesta: "Los números de las páginas son 49 y 50". Falso. No se puede abrir ningún libro y ver a la vez esas dos cifras. "Los libros siempre empiezan en página impar", explica Julián Rodríguez, de la editorial Periférica. Así que esos dos números nunca aparecen en un mismo pliego. El matemático Manuel de León presume una causa del error. "Parece que no han abierto muchos libros".La prueba planteada por la consejería de Educación a los alumnos de 3º de ESO está formulada erróneamente. EL PAÍS pidió al director del Instituto de Ciencias Matemáticas del Centro Superior de Investigaciones Científicas (CSIC), Manuel de León, que tratase de resolver el ejercicio planteado a los niños (¿qué dos números de página de un libro abierto suman 99?). Y las matemáticas no engañan.
Los expertos de Figar son los encargados de hacer las preguntas
"Si la suma es 99, para que sean consecutivos un número es n y otro n+1, esto es: 2n+1=99, 2n=98 y n es 49. Así que el otro tiene que ser 50", razonó De León, igual que debieron de hacer los profesores que elaboraron el examen. Pero el matemático del CSIC, a diferencia de sus compañeros, da un paso más: "El problema es que parece que
[quienes han redactado el enunciado del problema] no han leído muchos libros", bromea De León.
Y es que las páginas 49 y 50 no aparecen consecutivamente (en el mismo pliego) en ningún libro. De modo que si Andrea, la supuesta niña del ejercicio, leyese un libro real, nunca podría haber visto juntas esas dos cifras. "Las páginas siempre se enumeran, estén impresas o no, y la página en blanco es siempre la uno", precisa Malcolm Otero, de la editorial Barril y Barral. Éso hace que la 49 y la 50 nunca coincidan ante la mirada del lector.
Un fiasco para una prueba de conocimientos básicos que en la rama de matemáticas el año pasado dejó un dato preocupante: la nota media de los alumnos de 3º de la ESO en Madrid fue un 3,81 sobre 10. Este año, a falta de saber los resultados de los niños y niñas, existe otro factor de desaliento: el problema mal plantado al que tuvieron que enfrentarse los 50.000 alumnos de 755 institutos públicos, concertados y privados de la región. Los alumnos se enfrentaron también a una prueba de lengua, materia en la que el año pasado obtuvieron un aprobado de media, 5,35.
¿Cuánto tiempo necesitarías para escribir a ordenador un millón de letras si eres capaz de escribir 100 letras por minuto? ¿Qué significa que alguien llegó con pasos quedos a un lugar? Con preguntas como estas, la consejería de Educación evalúa los conocimientos básicos de los alumnos de 3º de la ESO en la Comunidad de Madrid. Desde 2008, esta prueba de nivel, sin efectos académicos, ha constatado que los adolescentes de 14 a 15 años entienden más de letras que de cifras.
La mañana empezó a las diez con la bestia negra, las matemáticas. Los bajos resultados de hace un año espantaban ayer a una profesora de esta asignatura del instituto Marqués de Suanzes (distrito de San Blas): "Las competencias matemáticas básicas permiten secuenciar, abstraer, generalizar... Si su educación se parase aquí, serían analfabetos", juzgaba Celedonia Bodega.
Y sus alumnos, pese a que salen más dignamente de las pruebas de lengua, parecen conscientes de que se juegan algo con eso de los números: "Vale que no hay que tener faltas de ortografía, pero analizar una frase no me sirve para la vida cotidiana", decía Diego, un estudiante del Marqués de Suanzes, después del examen.
Al menos en este instituto, si nos fiásemos de las impresiones post-examen de sus alumnos, cabría ser optimista con los resultados de 2010 sobre matemáticos. "Fue sencillo, más de repaso de lo que estudiamos en 2º de ESO y a principios de curso, que de lo que hacemos ahora: álgebra, gráficos...", comentaba con suficiencia Carla ante las preguntas de los periodistas. A cualquier otro que se le pidiese opinión, respondía con idéntica confianza en lo que acababan de hacer; la confianza del que luego no tendrá que rendir cuentas por sus notas, quizás. Nadie había reparado en el enunciado erróneo del primer problema de la prueba de matemáticas.
"No estoy nerviosa. Vengo con intención de hacerlo lo mejor posible, pero sin preocupaciones". Las palabras de Marina, reposada, era una muestra de la poca tensión competitiva con que afrontan los estudiantes este examen, obligatorio pero sin incidencia académica.
La consejería de Educación se encarga de diseñar los cuestionarios (12 ejercicios matemáticos y un comentario de texto, más un dictado, en las pruebas de ayer), hace los exámenes, los recoge e informa al cabo de un mes de los resultados a cada centro: las notas medias en cada materia del centro y del conjunto de institutos de la Comunidad, para poder comparar. "A nosotros nos sirve para ver cómo lo podemos hacer mejor y a los alumnos les refuerza la autoestima, porque la prueba es sencilla", analizó el director del Marqués de Suanzes, Carlos Romero.
Los profesores de los institutos no participan en la elaboración de la prueba ni controlan su realización. "Este examen es una especie de extraño que viene y luego se va", sostenía Milagros López, profesora de lengua española de 3º de ESO. "Se hace en los despachos, sin tener en cuenta a los profesores, se rellenan, luego se los llevan y nosotros nos limitamos a acatar", explicaba. Y a veces quienes los redactan suspenden.
Una técnica de evaluación polémica
La Prueba de Conocimientos y Destrezas Indispensables, así se llama el examen creado por Educación, genera dudas en el mundo de la educación. Los cuestionarios están diseñados por profesores de secundaria, que reciben este encargo de la Consejería de Educación, y tienen la apariencia de un examen corriente. Los expertos consultados por este diario no consideran válidos ni los resultados ni la prueba en sí misma, que permite hacer una clasificación de establecimientos docentes.
"¿Cómo es posible que un centro se caiga 150 puestos en la lista de un año para otro?", se pregunta Emilio Díaz, de la Federación Española de Religiosos de Enseñanza (FERE).
El método de evaluación tampoco resulta convincente para la asociación de padres de alumnos Giner de los Ríos: "No conocemos los criterios de preparación y evaluación de los exámenes. Hemos pedido información y la Comunidad de Madrid se limita a decir que se trata de saber las destrezas suficientes para acabar la ESO", se queja su presidente, José Luis Pazos, que apunta al mismo síntoma de mal funcionamiento que el portavoz de FERE: "En cualquier centro se ve el vaivén que hay de un año a otro. Un año eres el 20 y al siguiente, el 321. Es una prueba desestructurada".
Julio Carabaña, catedrático de Sociología de la Educación de la Universidad Complutense, define un problema diferente en esta clase de pruebas: "No se deben identificar los buenos o malos resultados con buenos o malos colegios. Son los alumnos los que son mejores o peores, en función de sus aptitudes, que son una mezcla de sus propias condiciones y de cómo han sido criados", argumenta. Alerta contra el posible uso de la prueba para evaluar la calidad de los centros.
¿Cuánto mide la diagonal del patio?
- Lengua española. En la prueba, los alumnos hicieron un dictado y un comentario de texto sobre el cuento Los Zarcillos, del periodista Manuel Chaves Nogales (Sevilla,1897-Londres, 1944). Al final del escrito, sobre una niña víctima de un timo, se explicaban los términos más inusuales (turbamulta -multitud desordenada- zarcillos -pendientes-, o empingorotada -mujer que presume de posición social-. Los alumnos debían responder a siete preguntas de comprensión sobre el citado relato.
- Matemáticas. Este examen consta de 12 ejercicios. Estos son algunos ejemplos: "El patio del colegio de Ana tiene forma de rectángulo. Mide 40 metros de largo y 30 metros de ancho. ¿Cuánto mide la diagonal del patio?" (50 metros). "De los 27 alumnos de 3ºB, 5 tienen el pelo rubio, 7 son morenos y el resto tiene el pelo castaño. El profesor ha sacado al azar un alumno a la pizarra. ¿Cuál es la probabilidad de que ese alumno tenga el pelo castaño?" (cinco sobre nueve).
Tu suscripción se está usando en otro dispositivo
¿Quieres añadir otro usuario a tu suscripción?
Si continúas leyendo en este dispositivo, no se podrá leer en el otro.
FlechaTu suscripción se está usando en otro dispositivo y solo puedes acceder a EL PAÍS desde un dispositivo a la vez.
Si quieres compartir tu cuenta, cambia tu suscripción a la modalidad Premium, así podrás añadir otro usuario. Cada uno accederá con su propia cuenta de email, lo que os permitirá personalizar vuestra experiencia en EL PAÍS.
En el caso de no saber quién está usando tu cuenta, te recomendamos cambiar tu contraseña aquí.
Si decides continuar compartiendo tu cuenta, este mensaje se mostrará en tu dispositivo y en el de la otra persona que está usando tu cuenta de forma indefinida, afectando a tu experiencia de lectura. Puedes consultar aquí los términos y condiciones de la suscripción digital.
Archivado En
- Consejerías autonómicas
- ESO
- VIII Legislatura CAM
- Educación secundaria
- Parlamentos autonómicos
- Gobierno autonómico
- Comunidades autónomas
- Política educativa
- Madrid
- Calidad enseñanza
- Enseñanza general
- Política autonómica
- Parlamento
- Sistema educativo
- Política
- Educación
- Gobierno Comunidad Madrid
- Comunidad de Madrid
- Administración autonómica
- España
- Administración pública