Selecciona Edición
Conéctate
Selecciona Edición
Tamaño letra

Matemáticas, Física y Química suman la mayoría de los suspensos en selectividad

Los expertos alertan de la deficiente formación de los estudiantes en el área de ciencias

Los resultados de la selectividad rondan cada año el 80% de alumnos aprobados. Sin embargo, cuando se consigue un cinco pelado de nota media es muy posible que en las calificaciones haya alguna asignatura suspensa. Incluso en notas medias más altas puede esconderse el suspenso en alguna materia. Las notas obtenidas en la selectividad en varias comunidades dejan ver que la media de las asignaturas de ciencias no alcanza el 5 en muchos casos. Las Matemáticas aplicadas, la Física y la Química cosechan la mayoría de los suspensos de los alumnos examinados el pasado junio.

Las ciencias son un duro hueso en los exámenes, los alumnos se atascan, se bloquean, los suspensos aparecen por doquier. En la Comunidad Valenciana, la nota media obtenida por los alumnos en la asignatura de Física fue de un 4,7; las Matemáticas aplicadas a las ciencias sociales, un 4,1 en la Universidad Autónoma de Madrid y un 4 en la Complutense, donde la Física tampoco llegó al 5; la selectividad catalana dejó un 4,60 en Química y suspenso el Dibujo Técnico y la Economía; los andaluces catearon la Mecánica. La sangría suele aparecer en las asignaturas científicas, aunque este año se detecta también un repetido suspenso en Historia de la Filosofía.

¿Por qué los expertos se alarman ante los insistentes suspensos en ciencias y, sobre todo, en Matemáticas? "La matemática es un saber acumulativo y no se puede construir sobre cieno, porque no solidifica". Lorenzo Blanco, profesor de Matemáticas en la Universidad de Extremadura, reflexiona sobre la archirrepetida base matemática, que, si no se obtiene desde los primeros cursos, acaba lastrando las demás asignaturas de ciencias. Y no sólo la Física, la Química o la Biología. "También la Geografía, la Geología o la Historia sufren las carencias matemáticas en los conocimientos de los alumnos", dice.

"Falla la didáctica"

¿Qué falla? Blanco apunta al origen. "Falla la didáctica, no se están enseñando bien las Matemáticas; todavía se siguen procedimientos rutinarios, los estudiantes aprenden de memoria la resolución de problemas clásicos, pero no se les enseña a resolverlos con imaginación. Si en selectividad les plantean un problema matemático distinto al que han aprendido, se pierden". Para Blanco, otro de los fallos del sistema es que "los profesores no suelen enseñar a los alumnos desde pequeños la utilidad de las Matemáticas para el resto de las disciplinas, para la vida diaria: hasta para estudiar sobre dietas alimentarias se necesitan las Matemáticas, pero los alumnos no lo ven".

Manuel de León es el presidente del Comité Español de Matemáticas que representa a España en la Unión Matemática Internacional. Este experto apunta al programa educativo como causa del problema: "Las Matemáticas requieren dedicación y esfuerzo individual, y en el instituto no hay suficientes horas para esta asignatura. Ya sé que todo el mundo dice lo mismo de su asignatura, pero en Matemáticas es evidente". De León lamenta que muchos chicos que aprueban la selectividad tienen un suspenso en esta asignatura, "y algunos de ellos después se matriculan en carreras de ciencias". "Debería haber asignaturas llave que, de estar suspensas, cerraran la puerta a determinados estudios", dice.

De León advierte de que el problema no se soluciona sólo seleccionando al alumnado, "porque no todos los chicos tienen las mismas capacidades ni los mismos medios". "Lo que hay que conseguir es que todos tengan el apoyo necesario. La sociedad no cumple con su obligación de dar un buen nivel a todos ellos", afirma.

Precisamente, para mejorar los conocimientos con los que llegan a la universidad los estudiantes, muchas facultades -cada vez más- han incorporado el llamado curso cero que imprime a los alumnos un barniz básico para arrancar con buen pie la carrera. De León advierte, además, de que España puede estar perdiendo en el camino una buena cantera de estudiantes de ciencia. Como coordinador de Matemáticas en la Agencia Nacional de Evaluación y prospectiva, donde se examinan los proyectos que se presentan para conseguir una beca de investigación, asegura: "Hay gente muy buena, pero cada vez menos. Y hay veces que se tiene una beca y no se consiguen becarios".

En una de las últimas cumbres de expertos matemáticos, celebrada en Granada, se habló de la "deficiente" formación matemática y de didáctica matemática que presenta buena parte de los profesores que imparten esta asignatura a los niños. "Se propuso organizar la carrera en tres itinerarios, uno para los que quieran dedicarse a la matemática pura, otro para la aplicada y otro itinerario educativo. Este último, para los que vayan a ser profesores, tendría al menos un 40% de asignaturas relacionadas con la docencia y prácticas en institutos", resume Blanco. "Ahora es el Ministerio de Educación el que tiene que tomar la iniciativa", concluye.

En septiembre de 2001 se creó una ponencia en el Senado por la que pasaron expertos españoles y extranjeros para explicar la "grave" situación de la "desastrosa" formación científica que reciben los alumnos. Casi dos años después, la Cámara alta aprobó una serie de recomendaciones para mejorar la enseñanza de ciencias. Entre ellas figuraba reforzar la formación inicial y la continua de los profesores.

Siempre los mismos errores

La Universidad de Extremadura tiene desde hace algunos años una línea de investigación sobre los errores y dificultades en el aprendizaje de las matemáticas, vinculada al departamento de didáctica de esta asignatura. El profesor Lorenzo Blanco trabaja en ello. "Lo que detectamos es que los errores que cometen los alumnos son siempre los mismos; por ejemplo, en álgebra o en ecuaciones".

Otra de las conclusiones que comparten los profesores de matemáticas de distintas facultades es que "incluso los estudiantes matriculados en la carrera de matemáticas tienen problemas para resolver algunos problemas que son tradicionales en la materia", explica Blanco. En general, dicen, se les ha enseñado una rutina, y cuando se les plantea un problema que hay que solucionar empleando la imaginación, caminos originales, no saben abordarlo. "Los alumnos de ESO y de bachillerato aún conservan el ingenio para la matemática aplicada, pero los profesores les vamos matando la imaginación. Acaban por resolver los ejercicios aplicando el método con el que el docente les ha enseñado", lamenta este profesor experto en didáctica matemática.

"Hemos trabajado en el departamento con una licenciada en Psicopedagogía para estudiar la afectividad, las emociones. Y el resultado es que los alumnos se bloquean y abandonan si ha pasado medio minuto sin que encuentren el camino para resolver el problema matemático que se les ha planteado", dice.

También saben, gracias a estas investigaciones, que las chicas son más "perseverantes" ante las dificultades que les plantean los ejercicios propuestos.

Existe algún ejemplo concreto para ilustrar la práctica matemática de la mayoría de los alumnos. "Si les pones un problema de geometría, un cálculo de área cuya fórmula sea complicada, no logran hacerlo. Y no se les ocurre descomponer los polígonos para ir calculando parte por parte, y luego sumar. Muy simple, como cuando medimos una casa que tiene recovecos y esquinas", detalla Blanco. Pero los alumnos se enredan en las fórmulas aprendidas de memoria. Y después llegan los suspensos.

* Este artículo apareció en la edición impresa del Lunes, 26 de julio de 2004

Más información