Selecciona Edición
Entra en EL PAÍS
Conéctate ¿No estás registrado? Crea tu cuenta Suscríbete
Selecciona Edición
Tamaño letra
WERNER HOFMANN / FÍSICO

“Queremos estudiar los límites de las teorías de Einstein”

El director del Instituto Max Planck de Física Nuclear en Heidelberg habla sobre las posibilidades que ofrecen los rayos gamma para conocer el universo

El físico Werner Hofmann, en la sede de la Fundación BBVA en Madrid
El físico Werner Hofmann, en la sede de la Fundación BBVA en Madrid

En el año 1800, el astrónomo alemán William Herschel descubrió que había más luz que la que ven nuestros ojos. Midiendo las distintas temperaturas de los colores que tomaba la radiación del Sol al pasar a través de un prisma, colocó un termómetro justo en el extremo del arcoiris, un poco más allá de la luz roja. El objetivo era medir la temperatura ambiente de la habitación, pero el resultado del experimento fue inesperado. La temperatura medida por ese termómetro era superior a la de la luz visible y el científico concluyó que debía haber algún tipo de luz invisible que hacía subir el mercurio. Había descubierto la radiación infrarroja.

Aquel hallazgo abrió, entre otras cosas, una nueva ventana a la observación del universo. Los telescopios que capturan la luz infrarroja han permitido observar procesos cósmicos invisibles con la luz normal. Herschel, por ejemplo, un telescopio de la Agencia Espacial Europea lanzado en 2009, ha permitido observar la formación de galaxias y estrellas con un detalle imposible para los telescopios ópticos.

Con los años, se descubrieron otros tipos de radiación que han ampliado nuestra capacidad de observación del cosmos. Es el caso de los rayos gamma, cien trillones de veces más energéticos que los fotones visibles, un tipo de luz que se encuentra más allá del límite violeta del arcoiris. Este rango es el que va a servir a físicos como Werner Hofmann (Baden-Baden, Alemania, 1952) para explorar algunos fenómenos superenergéticos y, quizá, revolucionar la física.

Uno de nuestros objetivos es entender qué sucede cerca de los agujeros negros

Hofmann, director del Instituto Max Planck de Física Nuclear en Heidelberg (Alemania), participó el martes en el ciclo de astrofísica y cosmología de la Fundación BBVA, en Madrid, para hablar de la Red de Telescopios Cherenkov (CTA, por sus siglas inglés), dos observatorios gemelos que explorarán hasta su límite las posibilidades de los rayos gamma. Uno de esos observatorios estará en la isla canaria de La Palma.

Pregunta. ¿Qué podemos aprender observando el universo a través de los rayos gamma?

Respuesta. La forma en que se producen los rayos gamma es muy diferente de la de la luz normal. La luz normal surge de cuerpos calientes que irradian porque están calientes y no hay nada lo bastante caliente en el universo para irradiar rayos gamma. Lo que creemos es que se producen cuando hay partículas muy energéticas en el universo que se aceleran de alguna manera interactúan con la materia y producen rayos gamma. Los rayos gamma nos hablan de estas partículas de muy alta energía en el universo y nos cuentan dónde han sido creadas, cómo se propagan o cómo interactúan con su entorno.

Hasta hace algo más de una década, se pensaba que procedían de algún rincón exótico del cosmos que no tenía un gran impacto, pero ahora, la actual generación de instrumentos nos ha mostrado que hay un gran número de aceleradores de partículas cósmicas en el universo. Estos aceleradores crean partículas muy energéticas y estas partículas también influyen en la forma de evolucionar de nuestro universo. Porque hay mucha energía en estas partículas y la galaxia tendría un aspecto diferente y habría evolucionado de otra manera sin estas partículas.

P. ¿Qué tipo de objetos producen este tipo de radiación?

Algunos modelos dicen que la velocidad de la luz no es constante dependiendo de la energía, algo que violaría la ley de Einstein

R. La fuente clásica predicha para los rayos gamma eran las supernovas. Hemos visto cómo estos objetos aceleran las partículas, lo que no sabemos es si solo con ellas se puede justificar la cantidad de partículas de alta energía que hay en el universo o si hay otros objetos.

P. ¿Cuáles son los principales objetivos para los nuevos observatorios de rayos gamma que se van a empezar a construir?

R. Tenemos tres grandes objetivos científicos para la CTA. Uno es entender cómo se crean las partículas de alta energía, especialmente en nuestra galaxia. Intentar comprender la formación y la propagación de rayos cósmicos.

El otro gran objetivo es intentar entender lo que sucede cerca de los agujeros negros. Sabemos que los agujeros negros producen unos chorros de eyecciones altamente relativistas, pero no sabemos cómo se generan estos chorros o cómo se aceleran las partículas en el chorro. También estamos intentando entender cómo se convierte en radiación el material que cae en los agujeros negros.

El tercer gran objetivo es buscar nueva física. Uno de los fenómenos fundamentales que queremos estudiar es aniquilación de materia oscura. En el centro de la galaxia hay partículas de materia oscura que son nuevas partículas elementales. En algunos modelos se predice que cuando colisionan se aniquilan y crean rayos gamma que producen una señal distinguible. Si esas partículas existen, la CTA debería ser capaz de detectarlas.

Conocemos fuentes de rayos gamma en las que no conocemos el objeto que las produce

También queremos estudiar los límites de las teorías de Einstein en energías muy elevadas. Hay teorías que predicen que en escalas de distancia muy cortas el espacio tiempo tiene una estructura espumosa. Los rayos gamma tienen longitudes de onda muy cortas, así que sienten ya un poquito esta estructura espumosa. En algunos modelos los rayos gamma de alta energía se propagan más rápido o más lento que la luz normal, lo que significa que la velocidad de la luz no es constante dependiendo de la energía, algo que violaría la ley de Einstein. Eso sería un indicio de que hay algo como esta espuma del espacio tiempo de gravedad cuántica. Tanto la gravedad cuántica como la materia oscura serían ambos grandes descubrimientos que revolucionarían nuestra forma de pensar sobre el universo.

P. ¿Pueden existir fuentes de rayos gamma que envíen señales de objetos cósmicos que aún no conocemos?

R. Entre las fuentes de rayos gamma que conocemos, hay algunas donde no vemos cuál es el objeto que los produce. Es una zona oscura del universo y de allí vienen rayos gamma. Puede ser que tengamos que mirar con nuevos instrumentos o que se trate de un mecanismo totalmente nuevo.

P. ¿De qué nuevos objetos podríamos estar hablando?

R. Una posibilidad serían conglomerados de materia oscura. La materia oscura es muy densa en el centro de la galaxia, pero también hay conglomerados en otras zonas y podría ser que fuesen el origen de algunos de esos rayos gamma porque solo lo ves en forma de aniquilación de rayos gamma. De todos modos, es mucho más probable que sea de un tipo de fuente que conocemos, como una estrella de neutrones que acelera las partículas y aún no hayamos encontrado esa estrella de neutrones.

Más información