Números elegantes
Raúl Ibañez, profesor titular de Geometría en la Universidad del País Vasco, responsable del portal Divulgamat, premio Savirón 2010 y COSCE 2011, presenta el 31º desafío con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española. Envía tu respuesta antes de las 0.00 horas del martes 18 de octubre (medianoche del lunes, hora peninsular española) a problemamatematicas@gmail.com, entre los acertantes sortearemos una biblioteca matemática como la que cada domingo se distribuye con EL PAÍS.
A continuación, para aclarar las dudas y en atención a nuestros lectores sordos, añadimos el enunciado del problema por escrito.
Un número es elegante si al sumar los cuadrados de sus cifras, repetir la esta misma operación sobre el resultado obtenio, e iterar este proceso suficientes veces obtenemos finalmente 1. Por ejemplo, el número 9.100 es elegante, ya que, primero, 9^2+1^2+0^2+0^2=82. Siguiendo el proceso: 8^2+2^2=68. Iterando una vez más: 6^2+8^2=100. Y, por último, 1^1+0^2+0^2=1.
El desafío consiste en encontrar infinidad de parejas de números consecutivos tal que ambos sean elegantes.
Tu suscripción se está usando en otro dispositivo
¿Quieres añadir otro usuario a tu suscripción?
Si continúas leyendo en este dispositivo, no se podrá leer en el otro.
FlechaTu suscripción se está usando en otro dispositivo y solo puedes acceder a EL PAÍS desde un dispositivo a la vez.
Si quieres compartir tu cuenta, cambia tu suscripción a la modalidad Premium, así podrás añadir otro usuario. Cada uno accederá con su propia cuenta de email, lo que os permitirá personalizar vuestra experiencia en EL PAÍS.
En el caso de no saber quién está usando tu cuenta, te recomendamos cambiar tu contraseña aquí.
Si decides continuar compartiendo tu cuenta, este mensaje se mostrará en tu dispositivo y en el de la otra persona que está usando tu cuenta de forma indefinida, afectando a tu experiencia de lectura. Puedes consultar aquí los términos y condiciones de la suscripción digital.