_
_
_
_

Cómo salvar seguro a 29 presos

Todos los reclusos sometidos a la 'prueba de los sombreros' menos uno pueden salvarse seguro siguiendo la estrategia adecuada

Ya hay ganador del sexto desafío que organiza EL PAíS en el primer centenario de la Real Sociedad Matemática Española. Esta semana, el ganador de una biblioteca matemática como la que se ofrece el domingo con EL PAÍS ha sido Mariano Madrid Mataran, informático que trabaja en Las Rozas (Madrid). En esta ocasión se recibieron 1.700 respuestas dentro del plazo previsto, pero sólo el 25% daba la solución correcta. Este domingo, el libro que se entrega con EL PAÍS, a un precio de 9,95 euros, es La cuarta dimensión, de Raúl Ibáñez.

Vayamos con la solución al problema que nos planteaba Javier Lázaro, estudiante de 4º de matemáticas de la Universidad de Zaragoza (ver planteamiento en el vídeo de la izquierda y la solución en el de la derecha). Recordemos el enunciado. Se informa a 30 presos de que se les va a colocar formando una fila y se les va a poner un sombrero en la cabeza a cada uno, blanco o negro, sin especificar cuántos gorros se pondrán de cada color. Cada preso sólo verá los sombreros de los prisioneros que tiene delante pero no el suyo ni los de detrás. Un guardia irá preguntando sucesivamente a cada uno de los presos desde el último (el que ve todos pero no el suyo) al primero (que no ve ninguno) de qué color es su sombrero. Los presos sólo pueden contestar blanco o negro: si aciertan son liberados y si no, son ejecutados. Todos los presos pueden escuchar las respuestas anteriores a las suyas.

Antes de llevar esto a cabo, los presos, que conocen la prueba a la que van a ser sometidos pero no naturalmente de qué color serán sus sombreros, tienen un tiempo para hablar entre ellos y pensar una estrategia de grupo. No vale hacer inflexiones de voz, ni cambiar el tono o el volumen en la respuesta: deben responder sin más blanco o negro ¿Cuál es la mejor estrategia para salvar SEGURO al mayor número de prisioneros? ¿Cuántos se salvan seguro con esa estrategia?

Hay una estrategia para salvar seguro a 29 presos. El primer preso al que pregunten, el que ve todos los sombreros menos el suyo, debe contar cuantos sobreros blancos hay (también podría hacerse con los sombreros negros, es indiferente). Si hay un número par de sombreros blancos contestará blanco (sería como si contestase par). Y si hay un número impar de sombreros blancos contestaránegro (sería como si contestase impar). Como él ha contestado en función de los sombreros que ha visto sin poder ver el suyo y sin ninguna pista las probabilidades de que se salve son del 50%.

El siguiente preso al que le pregunten contará de nuevo el número de sombreros blancos. Si ve un número par de sombreros blancos y el anterior preso dijo blanco (par) quiere decir que su sombrero es negro así que diciendo negro se salvará; sin embargo si ve un número par y el anterior dijo negro (impar) entonces su sombrero es blanco, diciendo blanco se salvará. De igual forma debe actuar si al contar los sombreros que ve este segundo preso hay un número impar de sombreros blancos. En este caso deberá decir negro si el anterior dijo negro (impar) y deberá decir blanco si el anterior dijo blanco (par).

El resto de presos deberá actuar de forma equivalente, sabiendo gracias a la respuesta del primer preso si el número de sombreros blancos es par o impar y teniendo en cuenta el color de los sombreros de los presos que les preceden (que aunque no los vean lo saben porque oyen las respuestas siempre acertadas de los presos anteriores). De esta forma 29 presos se salvarán seguro y uno (el primero que habla) tiene un 50% de probabilidades de salvarse.

Otros lectores se han acercado a la solución con razonamientos correctos pero sin llegar a salvar a 29 (luego las respuestas no son válidas). Por ejemplo, quienes han propuesto que los primeros presos codifiquen en binario el número de sombreros de cada color que llevan los restantes. La versión más sencilla propone que los 5 primeros presos en hablar codifiquen en binario el número de sombreros blancos que ven entre los otros 25. Digamos que blanco=0 y negro =1. Así, si dicen, de atrás hacia adelante, BBNBN, por ejemplo, el número binario sería 10100, que representa el 20. Sabiendo que hay entre ellos 20 sombreros blancos los 25 presos restantes pueden salvarse. Algunos lectores han afinado más el razonamiento, permitiendo salvar seguro a 26 presos: los 4 primeros presos codifica en binario el color menos frecuente entre los 26 restantes (no pasa nada si hay 13 blancos y 13 negros).

La respuesta más común ha sido que se salvan seguro 15 presos (y el resto al 50%), diciendo, por ejemplo, los presos 1, 3, 5,... el color del sombrero del 2, 4, 6,... respectivamente. Así se salvan todos los presos en posición par y el razonamiento es correcto, aunque se queda corto. Una paso más allá lo han dado quienes han conseguido salvar a 20 presos agrupándolos de 3 en 3. En cada grupo el primero en hablar dice blanco si los otros dos sombreros son del mismo color y negro si son distintos, lo que permite salvarse a sus dos compañeros.

El razonamiento que no es correcto es el de quienes han propuesto que cada preso diga el color del sombrero que tiene delante, y concluyen que se salvarían 29. Con este procedimiento podría salvarse sólo el primer preso si, por ejemplo, los colores se alternan: BNBNBN...

Algunos lectores nos han reprochado que el enunciado del problema era excesivamente macabro. Así que para quitar hierro a un problema tan truculento hemos decidido destacar la respuesta de Luis J. Fernández de las Heras, que se declara contrario a la pena de muerte y que según sus propias palabras, no ha parado hasta salvar a los 30 presos. Y así, tras dar la respuesta correcta, añade esta coletilla:

"Pero resulta que el suministrador de los sombreros, como buen sombrerero loco de Lewis Caroll, era aficionado a las matemáticas, y no se resistió a conocer las discusiones entre los presos. En secreto, escuchó cuál era el plan de los presos para salvarse [en su solución el primer preso en hablar debía decir blanco si veía un número impar de sombreros]. Ni que decir tiene que el sombrerero, como buen matemático contrario a la pena de muerte, suministró a los verdugos un número par de sombreros blancos y sólo 30 sombreros en total. Conseguido el final feliz. Los 30 presos salvados".

El próximo jueves platearemos un nuevo desafío.

Ya hay ganador del <a href="http://www.elpais.com/videos/sociedad/cuestion/sombreros/elpepusoc/20110420elpepusoc_1/Ves/">sexto desafío</a> que organiza EL PAíS en el <a href="http://www.rsme.es/centenario/" target="_blank">primer centenario de la Real Sociedad Matemática Española</a>. Esta semana, el ganador de una <a href="http://www.elpais.com/promociones/matematicas/">biblioteca matemática</a> como la que se ofrece el domingo con EL PAÍS ha sido <b>Mariano Madrid Mataran</b>, informático que trabaja en Las Rozas (Madrid). En esta ocasión se recibieron 1.700 respuestas dentro del plazo previsto, pero sólo el 25% daba la solución correcta. Este domingo, el libro que se entrega con EL PAÍS, a un precio de 9,95 euros, es <i>La cuarta dimensión</i>, de Raúl Ibáñez. <a href="http://www.elpais.com/articulo/sociedad/salvar/seguro/29/presos/elpepusoc/20110426elpepusoc_4/Tes"><b>Ver el planteamiento y la solución por escrito del problema</b></a> Vídeo: BERNARDO MARÍN / LUIS ALMODÓVAR
Javier Lázaro, estudiante de 4º de Matemáticas en la <a href="http://www.unizar.es/" target="blank">Universidad de Zaragoza</a>, presenta el sexto desafío de EL PAÍS con el que celebramos el <a href="http://www.rsme.es/centenario/" target="blank">centenario de la Real Sociedad Matemática Española</a>. Las respuestas pueden enviarse a <a href="mailto:problemamatematicas@gmail.com">problemamatematicas@gmail.com</a> antes de la medianoche del lunes 25 (00.00 horas del martes). Entre los acertantes sortearemos una <a href="http://www.elpais.com/promociones/matematicas/">biblioteca matemática</a> como la que ofrece cada semana EL PAÍS. Este domingo, por 9,95 euros con el periódico en el quiosco, <i>La cuarta dimensión</i>, de Raúl Ibáñez. <b>Nota importante</b>: Para aclarar todas las dudas sobre el problema y en atención a nuestros lectores sordos incluimos también el enunciado del problema por escrito. Se informa a 30 presos de que se les va a colocar formando una fila y se les va a poner un sombrero en la cabeza a cada uno, blanco o negro, sin especificar cuántos gorros se pondrán de cada color (pueden ser 29 blancos y uno negro, 15 y 15, 17 y 13...). Cada preso sólo verá los sombreros de los prisioneros que tiene delante pero no el suyo ni los de detrás. Un guardia irá preguntando sucesivamente a cada uno de los presos desde el último (el que ve todos pero no el suyo) al primero (que no ve ninguno) de qué color es su sombrero. Los presos sólo pueden contestar blanco o negro: si aciertan son liberados y si no, son ejecutados. Todos los presos pueden escuchar las respuestas anteriores a las suyas. Antes de llevar esto a cabo, los presos, que conocen la prueba a la que van a ser sometidos pero no naturalmente de qué color serán sus sombreros, tienen un tiempo para hablar entre ellos y pensar una estrategia de grupo. ¿Cuál es la mejor estrategia para salvar SEGURO al mayor número de prisioneros? ¿Cuántos se salvan seguro con esa estrategia? <b>Atención</b>: Para aclarar algunas dudas que han surgido ya entre los lectores. Los prisioneros no pueden hacer señas, ni tocar a los otros, ni dar pistas con el tono o volumen de voz... deben contestar blanco o negro de la forma más aséptica posible porque si los carceleros detectaran algún truco de los mencionados, matarían a todos. <a href="http://www.elpais.com/articulo/sociedad/ganar/siempre/palillos/elpepusoc/20110419elpepusoc_5/Tes">Ver los problemas y las soluciones anteriores</a> Vídeo: BERNARDO MARÍN / LUIS ALMODÓVAR

Tu suscripción se está usando en otro dispositivo

¿Quieres añadir otro usuario a tu suscripción?

Si continúas leyendo en este dispositivo, no se podrá leer en el otro.

¿Por qué estás viendo esto?

Flecha

Tu suscripción se está usando en otro dispositivo y solo puedes acceder a EL PAÍS desde un dispositivo a la vez.

Si quieres compartir tu cuenta, cambia tu suscripción a la modalidad Premium, así podrás añadir otro usuario. Cada uno accederá con su propia cuenta de email, lo que os permitirá personalizar vuestra experiencia en EL PAÍS.

En el caso de no saber quién está usando tu cuenta, te recomendamos cambiar tu contraseña aquí.

Si decides continuar compartiendo tu cuenta, este mensaje se mostrará en tu dispositivo y en el de la otra persona que está usando tu cuenta de forma indefinida, afectando a tu experiencia de lectura. Puedes consultar aquí los términos y condiciones de la suscripción digital.

Archivado En

Recomendaciones EL PAÍS
Recomendaciones EL PAÍS
Recomendaciones EL PAÍS
_
_