Selecciona Edición
Entra en EL PAÍS
Conéctate ¿No estás registrado? Crea tu cuenta Suscríbete
Selecciona Edición
Tamaño letra

Un cubo de suma cero

Izar Alonso (IES Diego Velázquez de Torrelodones) y Paula Sardinero (Colegio Virgen de Europa de Boadilla del Monte), estudiantes de 4º de ESO que participan en el Proyecto ESTALMAT, presentan el octavo desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española. Las respuestas pueden enviarse a problemamatematicas@gmail.com antes de la medianoche del martes 10 de mayo (00.00 horas del miércoles). Entre los acertantes sortearemos una biblioteca matemática como la que ofrece cada semana EL PAÍS. Este domingo, por 9,95 euros con el periódico en el quiosco, El enigma de Fermat, de Albert Violant.

NOTA IMPORTANTE: Para aclarar dudas y en atención a nuestros lectores sordos, incluimos a continuación el enunciado por escrito.

A cada uno de los vértices de un cubo le asignamos un 1, o un -1. Después asignamos a cada una de las caras el producto de los números de sus vértices.

¿Puede hacerse la asignación inicial de manera que la suma de los 14 números (8 de los vértices y 6 de las caras) sea 0? Encontrar tal asignación o demostrar que no existe. Como en el problema del reloj, se recomienda no probar con todos los casos posibles.

CONSULTA LOS PROBLEMAS ANTERIORES

Izar Alonso (IES Diego Velázquez de Torrelodones) y Paula Sardinero (Colegio Virgen de Europa de Boadilla del Monte), estudiantes de 4º de ESO que participan en el Proyecto ESTALMAT, presentan el octavo desafío de EL PAÍS con el que celebramos el centenario de la Real Sociedad Matemática Española. Las respuestas pueden enviarse a problemamatematicas@gmail.com antes de la medianoche del martes 10 de mayo (00.00 horas del miércoles). Entre los acertantes sortearemos una biblioteca matemática como la que ofrece cada semana EL PAÍS. Este domingo, por 9,95 euros con el periódico en el quiosco, El enigma de Fermat, de Albert Violant. NOTA IMPORTANTE: Para aclarar dudas y en atención a nuestros lectores sordos, incluimos a continuación el enunciado por escrito. A cada uno de los vértices de un cubo le asignamos un 1, o un -1. Después asignamos a cada una de las caras el producto de los números de sus vértices. ¿Puede hacerse la asignación inicial de manera que la suma de los 14 números (8 de los vértices y 6 de las caras) sea 0? Encontrar tal asignación o demostrar que no existe. Como en el problema del reloj, se recomienda no probar con todos los casos posibles. CONSULTA LOS PROBLEMAS ANTERIORES